The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic.

نویسندگان

  • Ritu Pathak
  • Violaine D Delorme-Walker
  • Michael C Howell
  • Anthony N Anselmo
  • Michael A White
  • Gary M Bokoch
  • Céline Dermardirossian
چکیده

The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GEF-H1: orchestrating the interplay between cytoskeleton and vesicle trafficking.

Vesicle trafficking is crucial for delivery of membrane compartments as well as signaling molecules to specific sites on the plasma membrane for regulation of diverse processes such as cell division, migration, polarity establishment and secretion. Rho GTPases are well-studied signaling molecules that regulate actin cytoskeleton in response to variety of extracellular stimuli. Increasing amount...

متن کامل

The Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription

Epithelial tight junctions recruit different types of signalling proteins that regulate cell proliferation and differentiation. Little is known about how such proteins interact functionally and biochemically with each other. Here, we focus on the Y-box transcription factor ZONAB (zonula occludens 1-associated nucleic-acid-binding protein)/DbpA (DNA-binding protein A) and the Rho GTPase activato...

متن کامل

TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis

Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the...

متن کامل

RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation via the RhoGEF GEF-H1

RalA and RalB proteins are key mediators of oncogenic Ras signaling in human oncogenesis. Herein we investigated the mechanistic contribution of Ral proteins to invasion of lung cancer A549 cells after induction of epithelial-mesenchymal transition (EMT) with TGFβ. We show that TGFβ-induced EMT promotes dissemination of A549 cells in a 2/3D assay, independently of proteolysis, by activating the...

متن کامل

Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.

Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2012